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A review of methods is presented which allow to determine the P-V-T behaviour of gas mixtures.
This review is based on the computations performed for about 2200 P-¥-T-X data of 12 binary
mixtures. The method of combination of the equation-of-state constants, the Joffe method and the
modified Bartlett rule proved to be the most suitable,

Although one encounters in practice much more often with gas mixtures than with
pure gases, there exist very few data on the volumetric behaviour of mixtures com-
pared to pure substances. The greater attention should be paid to the methods for
estimating the P-V-T behaviour of multicomponent systems. In this work an eva-
luation is carried out of seven methods: Dalton’s and Amagat’s laws, the Bartlett
rule, the Joffe rule, a modified Bartlett rule, the combination of the equation-of-3tate
constants and the theorem of corresponding states represented here by the Lee-Kesler
equation. Further we present a brief description of the methods and the way of eva-
luating.

Methods of Estimating the P-V-T Behaviour of Gas Mixtures

To estimate the P-V-T behaviour of gas mixtures, the following methods' ~3

used:

are

Dalton’s law. Dalton’s law pertains to the oldest attempts to describe the behaviour
of mixtures. The validity of this law requires the fulfilment of the relation

™Mz

N
P(T, d, Xy, X5, 000y XN-J) = P?(T) xid) = ZP?(T’ di) 5 (1)
it

i=1

where P(T, d, Xy, X3, ..., Xy—;) is the pressure of a mixture with composition
Xy, X3, ..., Xy— at a temperature T and molar density d, P?(T, x;d) is the pressure
of pure component i at a temperature T and molar density d; = x;d. For the com-
pressibility factor of the mixture we get

N
Z(T, d, Xy, Xg5 000 xN—l) =';xi2?(’r’ xid) > (2)

Collection Czechoslovak Chem. Commun. [Vol. 47] [1982]



372 Méiickova, Novak, Pick :

where z{ is the compressibility factor of pure component i at a temperature T and
density d; = x;d.

Amagat’s law. The molar volume and the compressibility factor of the mixture
which conforms to Amagat’s law are given by the relations

N
V(T, P, xy, Xa, 00y XN—1)=ZXiViO(T’P)’ (3)
i=1
N
2T, P, xy, %oy ooy Xny) = 3 x,28(T; P), 4
i=1 .

where V(T P) and z{(T, P) are the molar volume and the compressibility factor,
respectively, of pure component | at a temperature 7Tand pressure P.

A great advantage of Amagat’s law (unlike Dalton’s law or the Bartlett rule — see
below) is its easier application. Far most often one requires the knowledge of density,
volume or compressibility factor of a mixture at a certain temperature and pressure.
In such a case it is sufficient to find out the respective values at this temperature
and pressure in tables of pure substances and to multiply them by the respective
mole fractions. When applying Dalton’s law or the Bartlett rule we must in such
cases proceed tentatively. In this work the Newton method was applied in calcula-
tions.

Bartlett rule*. In this case we have the relation for the mixture pressure

N
P(T, d, xy, X3, ..., Xn—1) =_inP?(T, d) (3)

i=1

and for the compressibility factor

N
Z(T’ d, Xy, Xg, 0ens xN—l) Z_leiz?(T» d), (6)

where P?(T, d) and z?(T, d) are the pressure and the compressibility factor of pure
component i at a temperature T and molar density d.

From the hitherto given rules or laws, the Bartlett rule is the most accurate®~7
except for extremely high pressures where density is comparable to the density
in the liquid phase and where Amagat’s law is more suitable.

A drawback of all the three approximations is their limited applicability at tempera-
tures lower than the critical temperature of substances. In such cases the knowledge
is often required of the volumetric behaviour under conditions when the substance
occurs already in the liquid region. A simple example can be a mixture of H,O
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(x, = 0:05) and H, (x, = 0-95) at 100°C and pressure 2 MPa. When using Amagat’s
Jaw we need to know the volumes of H, and H,O in the gas state at 100°C and 2 MPa.
The use of Amagat’s law is in this case practically impossible (as well as that of Dal-
ton’s law or the Bartlett rule). This unpleasant property is not peculiar to further
two rules which stem as well from the knowledge of the volumetric behaviour of pure
compornents.

Joffe rule®®. The compressibility factor of mixture is given according to the Joffe
rule by the relation

N
Z(T, P7x17X21---:xN—1) :_glxiz?(Ti» Pi): (7)

where

T, = T(T4/TY), P; = P(P[P}) ®)

and T, and Py are the pseudocritical temperature and pseudocritical pressure of the
given mixture. Eq. (7) can also be written in the form

Z(T|T,, P|P}) :ii x;z3(T|Ty, PIPy) . 9

It means that the compressibility factor of mixture at a pseudoreduced temperature
T, = T|T, and a pseudoreduced pressure P, = P[P, is determined on the basis
of the compressibility factor of pure substances at the same reduced variables.

For the mixture volume we get the relation from Eq. (7)
s 0
V(T, P, x5 X3, .o Xnet) = (TofP) Y. xi(Pai/Ti) V(T3 Py, (10)
i=1

where T; and P; are determined by relations (8).

Up to now rather little is known about the use of this rule. The pseudocritical
quantities needed for calculating will be discussed below.

Modified Bartlett rule'®. The Joffe rule can be looked on as the application of the
theorem of corresponding states to Amagat’s law. Considering that the Bartlett rule
gives better results with mixtures than Amagat’s law it can be expected that also
an analogous improvement of the Bartlett rule might yield the same if not better
results than the Joffe rule. For this reason Malijevsky and Novdk!'® proposed the
relation for estimating the P~V-T behaviour of mixtures

AT, d, Xyy Xay oo Xnmg) = 3, x:20(T5 d3), (11)

iz

i
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where
T = T(Tki/Tk/) , 4= d(dki/dﬂ) = d(Vk’/Vki)' (12)

For thz mixture pressure we get

N
P = T/d, 2 xiP?(Ti’ di)/(Tkidki) =
i=1

= (T%) T x(Kaf ) PT ) (13

where P{(T;, d,) is the pressure of pure component i at a temperature T; and density d;
determined by relations (12).

A great advantage of the last two rules is that they are applicable even in the case
when some of components is under critical temperature. It approximately holds
that the mixture occurs at the saturation boundary at similar reduced variables
as the pure substance. Extrapolating into heterogeneous region (as e.g. on using
Amagat’s law) is not usually necessary or is very small®.

A disadvantage of these two rules, however, is that they require that the P-V-T
behaviour of substances should be described under reduced variables which cor-
respond to the given mixture, which in some systems can limit their applicability.
Most likely it can occur in systems containing hydrogen or organic substances with
higher molecular mass. Let us assume that 7, = 1-05, P; = 2:0 would hold for
a mixture. If this mixture contains hydrogen then the compressibility factor of hydro-
gen at T = 1-05 x 33-2 = 34-8 K and at pressure P = 2:58 MPa would be required
for application of the Joffe rule. Providing that the P~V-T behaviour of hydrogen
were expressed in terms of an equation of state whose constants were determined
from the region 100— 600 X, it would not be possible in such a case to ensure reliable
results.

An advantage of all the rules is that they are connected with no particular equation
of state or tables. For each substance we can therefore use the optimum equation
of state or tabular data.

Combination of the equation-of-state constants. At present the description
of P-V-T behaviour by means of equation of state in an analytical form continues
to put through more and more. If we wish to describe P-V-T behaviour and thermo-
dynamic properties, which are connected with this P-V-T behaviour, with experi-
mental accuracy (in the optimum case) we are forced to use more and more complicat-
ed equations because the demands on the equations of state increase all the time.

The method of combination of the equation-of-state constants stems from the
assumption that the equation which describes the P-V-T behaviour of pure substances
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is able to describe also the P—V-T behaviour of mixture on using a suitable choice
of the concentration dependence of “constants” (henceforth we shall use the expres-
sion parameter instead of constant).

With respect to the concentration dependence of the second and third virial coef-
ficients on composition, the relations? are used most often

A

B
™Mz
Mz

X;X;A; (14)

it

Y x iy (15)

1 k=1

M z
iz

i=1j

If we start from these relations, the problem is shifted to the determination of the

mixed parameters A;j, 4;;j, A The parameters A;;, 4;;, Ay, ... pertain to pure

substances. Unless we wish to determine these parameters on the basis of experi-
mental data, which would require a large effort, it is necessary to estimate them on the
basis of the parameters which belong to the pure substances.

The following estimates are used:

a) Arithmetic mean
ij = (Aii + Ajj)/2 s AiiJ = (2Am + AJJJ)/3 N (16)

In this case Eqs (/4) and (15) reduce to
N N
A=Y x4u, A=Y xAy. (17)

b) Geometric mean (if all 4;; or 4;; are positive or negative)
Ayj = sign (4;;) (4;.45)"%, (18)

[ISEs ]

Ay = (A%4;;)"2. (19)

iij IEERES I H)

On inserting Eqs (/8) and (19) into (/4) and (15) we get

A = sign (4;,) [;sz x|4q)2], (20)

=( Z XA (21)
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¢) In case of a parameter which characterizes the excluded volume of molecules,
the Lorentz average is used most often

Al = (47 + A2, (22)

which after inserting into Eq. (14) yields the relation

A=Y T rw(A + 4y (23)

I=1 j=

d) If we wish to take into account experimental data on the given system then the
arithmetic or geometric mean is altered by introducing a correction coefficient k;;
for some of parameters, e.g.>

Aij = (1 - kij) (Aii + Ajj)/z » (24)

A;5 = (1 - kij)~5ign (Aii)'(AiiAjj)l/z . (25)

The correction coefficients k;; are determined on the basis of experimental data
of the corresponding binary system and their absolute value does not usually exceed
the value 0-1.

For every equation of state it is necessary to check what kind of concentration
dependence is suitable for single parameters. For instance with the Benedict-Webb-
—Rubin equation we use Eq. (I7) for the constant By, Eq. (20) for Ao, C,, y and
Eq. (21) for a, b, ¢, a.

With more complicated equations of state, the parameters for different substances
have not a similar order of magnitude and often even the sign and therefore more
complicated concentration dependences than Eq. (17) cannot be used frequently.
These facts make then the obtained results worse. The greatest extension found
the method of combination of the equation-of-state constants in case of two-constant
equations and generalized equations. As to the more complicated equations, the
method of combination of the equation-of-state constants is used in connection
with the Benedict-Webb—Rubin equation.

Theorem of corresponding states. According to the theorem of corresponding
states it is possible to express the compressibility factor for all substances as a func-
tion of dimensionless quantities T, = T/T,, P, = P[P, and, if need be, z, or @ and
so like. In case of mixtures we usually have recourse to the so-called one-liquid
approximation according to which the mixture is replaced by a hypothetical pure
substance which the parameters T, Py and, if need be, z, or w’ pertain to and which
are designed as pseudocritical.
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The greatest extension found the tables of compressibility factor prepared by Lyder-
sen and coworkers!! and by Pitzer and coworkers'?, Their drawback is that they
cannot be used directly in connection with a computer. This disadvantage has been
removed by Lee and Kesler!® who have recently proposed a generalized equation
of state which can be considered to be an analytical transcription of the Pitzer
tables.

When applying not only these generalized methods but also the rules which have
been proposed by Joffe® and Malijevsky and Novdk!?, it is necessary to have a method
‘for determining the pseudocritical quantities. We shall present here only three
prescriptions which will be applied below.

According to Kay'# the pseudocritical quantities are determined by the relations

N N
Tk,=zxi7157 P;:ZXiPkia (26)
i=1

i=1

N N
, ' .
Vk=zxinia wk=ZA;w;,
i=1 i

i=1

TabLe 1

Basic data on systems tested

System Ref. Number Range Range Range

of points of1,°C of P, MPa of z
Ethylene-carbon dioxide 21 202 40—100 0:5—50 06 —1-1
Nitrogen—-n-butane 22 221 155—205 2:7—68 03 —1-8
Hydrogen sulphide- 23 90 20—100 =24 09 —1-1
—nitrogen
Methane-ethane 24 208 70—120 <21 05 —10
Methane-propane 24 200 35—340 =70 05 —1-0
Methane~n-butane 24 240 35-—340 =70 0-15—2:3
Methane-n-pentane 24 218 35—340 <35 0-15—1-4
Methane-n-decane 24 225 35—340 =70 0-15—4-6
Propene-1-butene 25 200 5—130 =7 06 —1-0
Hydrogen-methane 26 153 25— 80 =9 09 —1-1
Hydrogen—ethane 26 154 25— 80 =9 09 —1-1
Hydrogen-propane 26 72 25— 80 = 49 09 — 11
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Barner and Quinlan have proposed the relations'®

™Mz
2

Te =

Xixj’n(ij >

I

1

J

Tuj = (1/2) (T + Ty) Kij, K =K;;=10,

JJ

(/8)2 Zx.xJ(Vk’.“ ey, (27)

N
o =Y xw, z, = 0291-008w’,

The values of parameters K;; have been determined on the"basis of experimental
data for more than 100 binary systems and the authors give graphs as well from
which it is possible to read these values in some cases.

Lee and Kesler'? applying their equation to mixtures use the following relations

7 = 02905—-0-085w; , W = zRTyi/Pui s
N N

V= (1 Z Z nxj(Vk!i/j + Vk]j/3)3 s
W’

o = ixio.)i , (28)

i=1

N
Ty = (8! Z X TaT) 2 (Ve + WPP)

n[\/Jz

P, = (0~2905—0-085w’) RT{|Vy .

Testing and Evaluating the Methods Given

To be able to carry out the testing computations by means of a computer it was
assumed that the P-V-T behaviour of pure substances is described with sufficient
accuracy by an equation of state. In testing we used the Benedict-Webb-Rubin
(BWR)*$!7 equation, the Starling'®-'® and the Bender®® equations. On computing,
the deviation in the compressibility factor for the given temperature, pressure and
composition of mixture was always evaluated. Consequently the per cent deviation
would correspond to the per cent error in volume.

The basic data on the systems with which the above-mentioned rules and laws
were tested are given in Table 1. The results of computations are given in Table 1I,
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The following conclusions can be drawn on the basis of the results given in Table 1I:

Dalton’s law yields the absolutely worst results. An exception are the systems
containing hydrogen, where on the contrary Dalton’s law has given comparatively
good results. Considering that the second virial coefficients of hydrocarbon and
hydrogen have opposite signs, it is possible to expect those results.

Amagat’s law and the Bartlett rule can be placed into the second group. In some
cases, similar results were also obtained by means of the theorem of corresponding
states represented by the Lee—Kesler equation or by both further rules (the Joffe®
and the modified Bartlett rule'®) on using the Kay pseudocritical quantities.

To the third group pertain the Joffe rule, the modified Bartlett rule, the method
of combination of the equation-of-state constants and in some cases also the proce-
dure by Lee and Kesler. The method of combination of the equation-of-state con-
stants has yielded very good results in the methane-n-pentane system and in the
systems containing hydrogen (Table II). The Joffe rule has probably certain advan-
tages when describing the systems with unequally large molecules (methane—n-pen-
tane, methane—n-decane) where it has given the best results.

The good results obtained with the Joffe and modified Bartlett rules depend among
others on pseudocritical quantities used. On applying the Kay relations, the error
was about twice compared to that on using the relations of Barner-Quinlan. An ex-
ception is the methane—n-pentane system. When using the Barner-Quinlan relations,
the sensitivity to the parameter K;; was tested as well. It has proved that better
results can be attained with a value closer to unity®. However, this problem was not
investigated in detail.

A surprise were the results obtained on using more complicated equations. This is
especially evident in the ethylene—carbon dioxide system (Table ]l), where all three
equations could be used. Application of the Bender equation did not bring a marked
improvement in comparison with the BWR equation. Similar results were obtained
with the nitrogen-n-butane and methane-n-butane systems. Better results with the
Bender equation were attained in the methane-propane system. It is to be expected,
however, that the advantage of more complicated equations of state will appear
when calculating other thermodynamic quantities such as enthalpy, heat capacity,
and so like. It is namely well-known that small deviations in the volumetric behaviour
description lead to relatively high deviations in these quantities.

An attempt was also made to mix the equations of state (for the methane-propane
system) when each of the substances was described by different ¢quation on applying
the empirical rules. The results did not differ too much from the use of either the
BWR or the Bender equation even if the Bender equation used for both the substances
is somewhat more suitable. The reason can be seen in the fact that both equations
are approximately equally good for the given system.

The constants of the equations of state used were taken from the literature. In case

of the BWR equation, the parameters of the authors of the equation'” were mostly
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used, for N,, CO,, H,S, n-decane the parameters of Bishnoi and Robinson?’, for
i-butene the parameters of Kaufman?® were employed and the parameters of H,
were determined on the basis of generalized relations by Sua and Viswanath?®.
For the Starling equation, only the parameters of the authors of the equation’®:*°,
were used. In case of the Bender equation, the author parameters for ethylene®®
were used; the Henricks and coworkers ones®* were used for N,, CO,, CH, and
for propane and n-butane those of Teja and Singh32.

LIST OF SYMBOLS

constant (parameter) of equation of state
molar density
(subscript) component
(subscript) property at the critical point, component
interaction parameter between components i and j
number of components
pressure
gas constant
absolute temperature
molar volume
mole fraction
= PV/RT compressibility factor
acentric factor
(superscript) property of pure component
(superscript) pseudocritical quantity
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